UT to JUMPING RUN CREEK STREAM & WETLAND RESTORATION

FINAL AS-BUILT & BASELINE MONITORING REPORT

Cumberland County, North Carolina SCO Project Number 09-0806104 EEP Project Number 92345

Prepared for: North Carolina Ecosystem Enhancement Program 1652 Mail Service Center Raleigh, NC 27699-1652

Status of Plan: Final Submission Date: March 2011 Data Collection Completed: May 2010

Prepared by:

Stantec Consulting Services, Inc. 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

EXECUTIVE SUMMARY

The Mitigation Plan presented here includes the monitoring plan success criteria, methodology, and baseline conditions for the UT to Jumping Run Creek Stream and Wetland Restoration site. This northern Cumberland County, North Carolina site is located on the historic Long Valley Farm three miles northeast of Pope Air Force Base.

The overall goal of the UT to Jumping Run Creek Restoration Project was to restore a Coastal Plain headwater stream and wetlands, a Coastal Plain Small Stream Swamp, and nonriparian wetlands. The objectives of the project were to restore wetland hydrology to small stream swamp wetlands, restore stream stability and improve aquatic habitats, restore historic flow paths and flooding processes, improve floodplain functionality, establish native vegetation within the permanent conservation easement, and investigate the ecological benefits of installing larger containerized trees in select smaller designated areas.

Wetland functions on the site had been impaired as a result of agricultural conversion and cattle grazing. Historically, the stream flowing through the site was channelized to reduce flooding and provide drainage for adjacent agricultural and cattle fields. Major project components included the enhancement and restoration of the unnamed tributary to Jumping Run Creek through the filling of channelized portions of stream and the restoration of valley topography. This also included the creation of a new meandering channel across the abandoned floodplain and the filling of drainage ditches. The upstream portion of the stream restoration used the coastal plain headwater stream restoration methodology and included the construction of a braided channel. Another component of the project included the enhancement and restoration of riparian wetlands along the stream by reintroducing surface roughness, planting native wetland vegetation, and restoring overbank flooding regimes. Restoration of nonriparian wetlands included restoring more natural water table conditions and the planting of native wetland vegetation.

All stream reaches will be visually monitored at least twice per year. Reach UT1a, the braided headwater stream, will be also be evaluated for visual evidence of flow. A survey of the longitudinal profile and ten permanent cross-sections will be completed each year on Reach UT1b, the single-thread restoration reach. Reach UT1c, the stream enhancement reach, will be visually assessed for stability. A crest gauge is located along Reach UT1c and will be observed during each monitoring visit. At least two bankfull events must occur during the five year monitoring period with the events occurring in different years.

Vegetative sample plots will be quantitatively monitored during September of each monitoring year. Twelve vegetation plots will be monitored as per the CVS-EEP Protocol for Recording Vegetation, version 4.2 (CVS-EEP 2008) and five random transects will be monitored for species composition and survival. The plots will be monitored for a minimum of 5 years. The vegetative success of the restoration site will be evaluated based on the species density and survival rates. Vegetation monitoring will be considered successful if at least 260 stems/acre are surviving at the end of five years. The interim measure of vegetative success for the site will be the survival of at least 320 3-year old planted trees per acre at the end of year three of the monitoring period and 280 4-year old planted trees per acre at the end of the monitoring period.

Fifteen automated groundwater monitoring gauges have been installed across the project area to document the hydrologic conditions of the site. Eleven wells have been installed in the riparian areas and four have been installed in the non-riparian areas of the site. Groundwater gauges will be downloaded on

at least a bi-monthly basis during the growing season. A reference well is located in the existing wetlands onsite in the northeast corner of the property. As per the restoration plan, the objective for the hydrology monitoring in the wetlands is for the site to be saturated within 12 inches of the soil surface for at least 6% of the growing season in the riparian wetlands, and 9% of the growing season in the non-riparian wetlands.

The results of the as-built survey demonstrate that the restoration project has been built to design specifications.

Table of Contents

Execut	ive Summary	i
1.0 Pr	oject Goals, Background and Attributes	1
1.1	Location and Setting	1
1.2	Project Goals and Objectives	1
1.3	Project Structure, Restoration Type and Approach	2
1.3.1	Project Structure	2
1.3.2	Restoration Type and Approach	2
1.4	Project History, Contacts, and Attribute Data	3
2.0 St	ccess Criteria	4
2.1	Morphologic Parameters and Channel Stability	4
2.1.1	Dimension	4
2.1.2	Pattern and Profile	4
2.1.3	Substrate	4
2.1.4	Sediment Transport	4
2.2	Vegetation	4
2.3	Hydrology	5
2.3.1	Streams	5
2.3.2	Wetlands	5
3.0 M	onitoring Plan Guidelines	5
3.1	Hydrology	5
3.1.1	Wetland	5
3.1.2	Stream	5
3.2	Stream Channel Stability and Geomorphology	6
3.2.1	Dimension	6
3.2.1	Pattern and Profile	6
3.2.2	Substrate	6
3.2.1	Sediment Transport	6
3.3	Vegetation	6
3.4	Photo Stations	7
3.5	Watershed	7
3.6	Monitoring Plan View	7
3.7	Maintenance and Contingency Plans	7
4.0 As	s-Built Conditions / Baseline	8
4.1	As-Built/Record Drawings	8
4.2	Baseline Data (Year 0)	8
4.2.1	Channel Morphology	8
4.2.2	Verification of Plantings	9
4.2.3	Photo Documentation	9
4.2.4	Hydrology	9
5.0 Re	eferences	10
6.0 Aj	opendices	11
А	ppendix A General Tables and Figures	
А	ppendix B Morphological Summary Data and Plots	
А	ppendix C Vegetation Data	
А	ppendix D As-Built Plan Sheets	

1.1 LOCATION AND SETTING

The unnamed tributary (UT) to Jumping Run Creek Stream and Wetland Restoration project is located in Cumberland County, North Carolina, approximately three miles northeast of Pope Air Force Base. (Figure 1, Appendix A). The stream is located within the Cape Fear River Basin (NCDWQ Subbasin 03-06-14) and the United States Geological Survey (USGS) 8-digit Hydrologic Unit Code 03030004. The 1.2 square mile project watershed is located in the Sandhills physiographic province of North Carolina. The project site is located on a terrace of the Lower Little River.

1.2 PROJECT GOALS AND OBJECTIVES

The goal of the UT to Jumping Run Creek Restoration Project was to restore a "Coastal Plain Small Stream Swamp" system, as described by Schafale and Weakley (1990) in addition to a Coastal Plain headwater stream and wetlands, and nonriparian wetlands. Historically, these systems experienced heavy human and cattle disturbance. Wetland functions on the site were impaired as a result of agricultural conversion and cattle grazing. Historically, the stream flowing through the site was channelized to reduce flooding and provide drainage for adjacent agricultural and cattle fields. Field areas were also graded and ditched to promote rapid surface drainage, and spoil from channel/pond excavation was spread on floodplain areas. As a result, nearly all wetland functions were removed within the field areas. The channelized stream and drainage ditches flowing through the system no longer functioned as a Coastal Plain Small Stream Swamp. The goal of the project is to enhance functional elements of the unnamed tributary and the associated riparian and non-riparian wetlands.

The major project components included the enhancement and restoration of the unnamed tributary to Jumping Run Creek through the filling of channelized portions of stream and restoration of valley topography. This also included the creation of a new meandering channel across the abandoned floodplain and the filling of drainage ditches. Another component included the enhancement and restoration of riparian wetlands along the UT by reintroducing surface roughness, planting native wetland vegetation, and restoring overbank flooding regimes. Filling the ditches will also serve to restore wetland hydrology.

The primary design goals of the project were to restore and enhance stream and wetland functions to the impaired areas within the Cape Fear River Basin. To achieve these goals the following objectives were identified:

- Restore wetland hydrology to small stream swamp wetlands
- Restore stream stability and improve aquatic habitats
- Restore historic flow paths and flooding processes
- Improve floodplain functionality
- Establish native vegetation within the permanent conservation easement

• Investigate the ecological benefits of installing larger trees in smaller designated areas throughout the vegetated buffer

1.3 PROJECT STRUCTURE, RESTORATION TYPE AND APPROACH

1.3.1 Project Structure

The project involved restoration of 7,318 linear feet (LF) of stream and 96 acres (AC) of riparian and non-riparian wetlands, and enhancement of 1,935 LF of stream and 3.4 AC of riparian wetlands along an unnamed tributary (UT) to Jumping Run Creek. A recorded conservation easement consisting of 225.3 AC will protect all stream reaches and riparian buffers in perpetuity. Refer to Table 1 and Figure 2 in Appendix A for a table and detailed plan view of the project components.

1.3.2 Restoration Type and Approach

The purpose of the project was to restore wetland functions to agricultural and cattle fields on the site and to restore stream functions to the impaired stream channel that flows through it. The restored UT was divided into three reaches: UT1a (headwater stream), UT1b (low energy stream), and UT1c (downstream forested area). The project also included enhancement of existing jurisdictional riparian wetlands, restoration of riparian wetlands along UT1a and UT1b, and restoration of non-riparian wetlands.

Reach UT1a restoration focused on restoring a multi-thread system within existing field areas to a DA stream type system. Restoration consisted of filling the channelized portions of stream and restoring valley topography. It also consisted of restoring surface roughness in the valley and the grading of shallow flow paths. It was designed to allow the stream system to form on its own, either as a single or braided channel headwater stream within the valley. The design included riparian buffers ranging from approximately 50 feet to 1,100 feet along the stream reach, protected by a perpetual conservation easement.

Rosgen Priority Level 1 and 2 approaches were used for the restoration of UT1b. The design called for existing ditches to be filled in, and restoration of the system to a sand bed C type channel, with low slope and a high width-to-depth ratio. The design included riparian buffers ranging from approximately 185 to 1,100 feet along the stream reach, protected by a perpetual conservation easement.

UT1c is the location of the original channel that was present before historic stream alteration activities such as channelization and dredging disconnected it from the upstream system. The existing channel, though it has been modified in the past, was found to be relatively stable during field assessments for the design. The restoration called for the enhancement of UT1c (E/C/DA stream type) by reconnecting the existing channel to the upstream system with no disturbance to the existing wooded riparian buffer. The restoration of historic flows should also provide additional water inputs to the wetland systems that exist within the wooded area. The existing riparian buffer system is protected by a perpetual conservation easement.

Riparian wetland restoration was designed in the agricultural field areas adjacent to UT1a and UT1b. To restore wetland hydrology, the design called for the existing stream and drainage ditches to be filled and the installation of ditch plugs where the restored channel crossed the pre-restoration channel. Also, surface roughness was reintroduced to promote surface ponding and infiltration, decrease drainage

capacity, and restore more natural water table conditions across the restoration site. Existing jurisdictional riparian wetlands along UT1a and UT1b were designed to be enhanced through native wetland planting.

The revegetation plan for the overall riparian system considered the combination of existing onsite native vegetation and riparian communities identified by Schafale and Weakley (1990) that include "Coastal Plain Small Stream Swamp", "Coastal Plain Bottomland Forest", "Streamhead Pocosin", and "Streamhead Atlantic White Cedar Forest". The vegetative components of this project include streambank, floodplain, and wetland planting. These components were separated further into zones described as headwater riparian, riparian, and transitional. Bare-root and containerized trees, live stakes, and permanent seedlings were planted within designated areas of the conservation easement. A minimum 50-foot buffer was established along the restored stream reaches UT1a and UT1b. UT1c runs through an existing forested area which remained undisturbed during the construction of the restoration areas. The revegetation plan for the non-riparian/upland system considered a combination of existing onsite native vegetation and non-riparian/upland communities identified by Schafale and Weakley (1990) that include "Mesic Pine Flatwood", "Wet Pine Flathill", "Pine/Scrub Oak Sandhill", and "Pine Savanna". The planting area for the non-riparian wetland areas was designated by the zone "Non-riparian/Upland".

1.4 PROJECT HISTORY, CONTACTS, AND ATTRIBUTE DATA

The restoration project was designed by Michael Baker Engineering, with construction and planting on the project completed in April 2010. The as-built survey was conducted in May 2010. Refer to Tables 2-4 in Appendix A for additional project and contact details.

The 1.2 square mile project watershed is located in the Sandhills physiographic province of North Carolina. The project site is located on a terrace of the Lower Little River. Slopes are generally less than one percent. Elevations on the UT to Jumping Run Creek site range from approximately 138 to 166 feet above mean sea level. The subsurface geology in the project vicinity consists of the Cape Fear formation, which is comprised of sandstone and sandy mudstone (Geologic Map of North Carolina, NC Geological Survey, 1998). Soils found on site include Entisols, Inceptisols, and Ultisols formed from alluvium deposited by the Lower Little River. The Natural Resources Conservation Service (NRCS) Soil Survey for Cumberland County (USDA-SCS, 1984) indicates that the area is mainly underlain by Deloss loam and Pactolus loamy sand. Smaller areas of the Altavista, Johnston, Roanoke, Tarboro, and Wickham series are also mapped on the site.

The watershed is rural with a mixture of forested lands, agricultural row crops, pasture and one residential development. The project site was used for row crops and pasture, and included areas of forested land.

Channel stability, vegetation survival, and viability of wetland function will all be monitored on the project site. Post-restoration monitoring will be conducted for a minimum of five years or until the success criteria are met following the completion of construction to document project success.

2.1 MORPHOLOGIC PARAMETERS AND CHANNEL STABILITY

2.1.1 Dimension

Reaches UT1a and UT1c involved restoration techniques to restore historic flow patterns and flooding functions. Monitoring efforts for reaches UT1a and UT1c will focus on visual documentation of stability. Dimensional characteristics obtained from cross-sectional surveying on UT1b will be compared year to year. All monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type. Natural variability is expected, however the system should not experience trends toward excessive increasing bank erosion, channel degradation, or channel aggradation.

2.1.2 Pattern and Profile

The longitudinal profiles should show that the bedform features are remaining stable. The pools should remain deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools.

2.1.3 Substrate

Since the streams throughout the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore, as per NCEEP, bed material analyses will not be undertaken for this project.

2.1.4 Sediment Transport

Sediment transport evaluations will not be undertaken during the five-year monitoring period. However, the dimension, pattern, and profile survey for baseline conditions will be analyzed to calculate shear stress and stream power to determine if these values fall within the acceptable range of values for NC sand bed systems.

2.2 VEGETATION

The vegetative success of the restoration site will be evaluated based on the species density and survival rates. Vegetation monitoring will be considered successful if at least 260 stems/acre are surviving at the end of five years. The interim measure of vegetative success for the site will be the survival of at least 320 3-year old planted trees per acre at the end of year three of the monitoring period and 280 4-year old planted trees per acre at the end of year four of the monitoring period. In addition, the buffer must be at least 50-feet wide on both sides of the channel and in the wider areas at the downstream end of the project along UT1c. During monitoring, any encroachments into the conservation easement should be reported to NCEEP and remediated.

2.3 HYDROLOGY

2.3.1 Streams

Two bankfull events must be documented within the five-year monitoring period for reaches UT1a and UT1b. The two bankfull events must occur in separate years; otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years. A crest gauge has been installed along UT1b as depicted in Figure 2 in Appendix A. The gauge will be checked at each site visit to determine if a bankfull event has occurred. Other signs of bankfull flow including wrack lines, sediment deposition, and actual observance of flow will be documented as well. The headwater stream reach (Reach UT1a) will be visually assessed during each monitoring visit to evaluate indicators that the braided channel is exhibiting flow.

2.3.2 Wetlands

In order to determine if the rainfall is normal for the given year, rainfall amounts will be tallied using data obtained from the Cumberland County WETS Station as well as an on-site rain gauge. As per the restoration plan, the objective for the hydrology monitoring in the wetlands is for the site to be saturated within 12 inches of the soil surface for at least 6% of the growing season in the riparian wetlands, and 9% of the growing season in the non-riparian wetlands.

3.0 Monitoring Plan Guidelines

3.1 HYDROLOGY

3.1.1 Wetland

Fifteen automated groundwater monitoring gauges have been installed across the project area to document the hydrologic conditions of the site. Refer to Figure 2 in Appendix A for the location of the groundwater monitoring gauges. Eleven wells have been installed in the riparian areas and four have been installed in the non-riparian areas of the site. Groundwater gauges will be downloaded on at least a bimonthly basis during the growing season. A reference well is located in the existing wetlands onsite in the northeast corner of the property and is depicted on Figure 2 in Appendix A.

3.1.2 Stream

One crest gauge has been installed onsite and is located just downstream from groundwater gauge 8. Each visit to the site will include documentation of the highest stage for the monitoring interval and a reset of the device. Other indications of bankfull flow including the presence of wrack lines, sediment, or flooding will also be recorded and documented photographically. Refer to Figure 2 in Appendix A for the location of the crest gauge. The headwater stream reach (Reach UT1a) will be visually assessed during each monitoring visit to evaluate indicators that the braided channel is exhibiting flow. A visual assessment form was created for this purpose by NCEEP and is included in Appendix B.

3.2 STREAM CHANNEL STABILITY AND GEOMORPHOLOGY

3.2.1 Dimension

A total of 10 permanent cross-sections (7 riffles, 3 pools) have been installed along UT1b. Each crosssection was marked on both banks with permanent pins. A common benchmark has been established for cross-sections to facilitate comparison of year-to-year data. The annual cross-section survey will include points measured at all breaks in slope including top of bank, bankfull, inner berm, edge of water, and thalweg if the features are present. Dimensional data will be compared from year to year to ensure project stability. Stream channel stability and geomorphic monitoring for reaches UT1a and UT1c restoration success will be documented visually. Refer to Figure 2 in Appendix A for locations of cross-sections along reach UT1b and representative photo station points.

3.2.1 Pattern and Profile

Annual measurements for the plan view of UT1b will include sinuosity, meander width ratio, and radius of curvature. Radius of curvature measurements will be taken on newly constructed meanders for the first year of monitoring only. A longitudinal profile will be completed each year of the monitoring period for the entire length of the UT1b restore channel. Measurements will include thalweg, water surface, inner berm, bankfull, and top of low bank. Each of these measurements will be taken at the head of each feature (e.g. riffle, run, pool, and glide).

3.2.2 Substrate

Since the streams throughout the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore, as per NCEEP, bed material analyses were not undertaken for this project.

3.2.1 Sediment Transport

As mentioned previously, additional sediment transport analyses will not be conducted during the fiveyear monitoring period. However, the dimension, pattern, and profile survey will be analyzed for baseline conditions to calculate the shear stress and stream power of the restored UT1b. These values will then be compared to the range of values for stable NC sandbed systems to determine if the restored reach's values are acceptable.

3.3 VEGETATION

Vegetative sample plots will be quantitatively monitored during September of each monitoring year. Twelve vegetation plots will be monitored as per the CVS-EEP Protocol for Recording Vegetation, version 4.2 (CVS-EEP 2008), and five random transects will be monitored for species composition and survival. The plots will be monitored for a minimum of five years. Refer to Figure 2 in Appendix A for the locations of the vegetation plots. Baseline monitoring data is provided in the Appendix C data tables.

Twelve $10m \ge 10m (100m^2)$ CVS plots were established within the project area. In each plot, four plot corners were permanently located with rebar. Planted vegetation (Level 1) was recorded for the baseline

monitoring, while both planted vegetation and natural volunteers (Level 2) will be recorded beginning in Monitoring Year 2.

The five random transect plots are $2m \ge 50m (100m^2)$ and consist of surviving species counts only. Each year the location of the plots will change and be chosen randomly, but stratified to be spread across the different planting zones. These plots are aimed at providing a more thorough account of the vegetation condition across the site outside the permanent vegetation plots.

Any vegetative problem areas in the project will be noted and reported in each subsequent monitoring report. Vegetative problem areas may include areas that either lack vegetation or include populations of exotic vegetation.

3.4 PHOTO STATIONS

Representative photo station points have been identified and located using GPS. The stations are shown on Figure 2 in Appendix A. Photos will be taken at each location at approximately the same time each year. Vegetation plot photos will be taken during the vegetation monitoring event each year.

3.5 WATERSHED

Any changes to land use in the watershed that would cause changes to flow within the project streams will be assessed over the five-year monitoring period.

3.6 MONITORING PLAN VIEW

A plan view of the monitoring scheme is presented in Figure 2 in Appendix A.

3.7 MAINTENANCE AND CONTINGENCY PLANS

Any maintenance needs will be determined during monitoring visits. During the baseline monitoring year upon completion of construction, the contractor must address any issues under their warranty. In subsequent monitoring years, the monitoring firm will determine maintenance needs. Maintenance items will be coordinated with NCEEP to determine the appropriate course of action.

The monitoring firm will visually assess the site to verify that the stream and wetland are functioning as needed and will note any adjustments that may be necessary. According to the Restoration Plan, small areas of multiflora rose (*Rosa multiflora*) and Chinese privet (*Ligustrum sinense*) were present onsite and were removed during construction (Baker 2008). It is not anticipated that invasive plant species will be a significant problem onsite but these two species in particular will be watched. During the monitoring period, if these or any other invasive species establish to the point of threatening the desired vegetative community, hand cutting and herbicide treatment may be used to treat problem areas.

Wildlife, including but not limited to beavers and deer, have the potential to destroy vegetation and stream features either by foraging or flooding. Several beaver dams were observed on-site during the design phase (Baker 2008). Should a significant portion of the site be damaged such that the success criteria cannot be achieved, measures such as trapping, beaver dam removal, or repellents may be used.

4.1 AS-BUILT/RECORD DRAWINGS

Site grading was complete in March 2010. Planting was completed in April 2010 and the baseline vegetation data collection occurred on April 26 and 27, 2010. The as-built survey was completed by Turner Land Surveying from May 20 to June 6, 2010. Morphological surveying was completed by Stantec on May 4, 2010. The As-Built Plan Sheets are located in Appendix D.

4.2 BASELINE DATA (YEAR 0)

4.2.1 Channel Morphology

4.2.1.1. Profile

The entire length of the single thread restoration reach (UT1b) was surveyed by Stantec staff using survey-grade GPS to assess baseline conditions. Multiple parameters were located including top of bank, thalweg, and water surface. The longitudinal profile is shown in Appendix B. The channel slope lies within the design parameters for this reach.

4.2.1.2. Dimension

Ten cross sections on the single thread restoration reach (UT1b) were surveyed by Stantec staff. Baseline morphological data is presented in Tables 5 and 6 in Appendix B, along with cross-sectional data at the ten permanent cross sections. The channel cross-section dimensions lie within the design parameters for this reach.

4.2.1.3. Pattern

The pattern of the single thread portion of the stream (Reach UT1b) was picked up during both the asbuilt survey and the baseline morphology survey. The location is shown on both the component map in Appendix A as well as in the As-Built plan sheets in Appendix D. Morphological calculations are included in Table 5 in Appendix B. The pattern values lie within the design parameters for a stable channel.

4.2.1.4. Substrate

Since the streams throughout the project site are dominated by sand-size particles, pebble count procedures would not show a significant change in bed material size or distribution over the monitoring period; therefore as per NCEEP, bed material analyses were not undertaken for this project.

4.2.1.5. Sediment Transport

Sediment transport evaluations consisted of two characteristics: shear stress and stream power. Shear stress is a function of the specific gravity of water, riffle cross-section geometry, and average channel slope. Stream power is a function of specific weight of water, bankfull discharge, average channel slope,

and riffle bankfull width. These factors were calculated with the data gathered through the measurement of the plan, pattern, and profile. The baseline calculated shear stress for the restored UT1b is 0.056 lb/ft^2 and stream power is 0.69 W/m^2 . These numbers lie within the acceptable range for shear stress and stream power according to reference reach data (Baker 2008).

4.2.2 Verification of Plantings

Stantec staff completed the baseline vegetation monitoring on April 27, 2010 using the CVS-EEP Protocol for Recording Vegetation, version 4.2 (CVS-EEP 2008). Monitoring was conducted in 12 vegetation plots and 5 random transects. Random transects consisted of survival and species composition only. Plots 1 and 3 are located in the headwater riparian planting zone; plot 5 in the headwater riparian containerized planting zone; plots 2 and 6 in the transitional zone; plots 4 and 9 in the upland/non-riparian zone; plots 7, 8, 10, and 12 in the riparian zone; and plot 11 is located in the riparian containerized planting zone. Random transect 1 was located in the headwater riparian wetland, transect 2 was located in the riparian wetland planting area, transects 3, 4 and 5 were located in the upland/non-riparian zone.

According to the data collected, the average plant density among the 17 plots/transects is 438 stems/acre. The highest plant densities occurred in plots 1, 5, and 6 and random transects 1 and 5. Plots 2 and 4 and random transect 3 are not meeting the interim 3-year vegetation success criteria. The original planting plan specified 597 stems/acre, with an additional 10 stems/acre in the containerized zones. Vegetation sampling details are included in Appendix C.

4.2.3 Photo Documentation

Photo stations were established in 36 locations along the project. The location of the stations can be seen in Figure 2 in Appendix A. Baseline vegetation station photos were taken on April 26 and 27, 2010 during the baseline vegetation monitoring. Vegetation station photos for the baseline monitoring year are provided in Appendix C. Baseline stream station photos were taken on May 4, 2010. Stream station photos for the baseline monitoring year are provided in Appendix B.

4.2.4 Hydrology

Fifteen 40" Ecotone groundwater monitoring gauges were installed onsite on April 27, 2010. Gauges 1-3 and 6 are located in the headwater riparian wetland zone while gauges 8-9, 11-12 and 14-15 are located in the riparian wetland restoration areas along the single thread channel. Gauges 4, 7, 10, and 13 are located in the non-riparian wetland restoration areas and gauge 5 is located in the wetland enhancement area. A reference gauge (gauge 16) was installed during the project design period and is located in the existing wetlands on the northeastern portion of the site. A rain gauge was installed onsite on July 8, 2010. A crest gauge was installed onsite on April 27, 2010. The crest gauge will be used in future monitoring to verify bankfull events. The location of the precipitation gauge, reference well, and groundwater monitoring wells are included in Figure 2 in Appendix A.

The headwater visual assessment was not completed for the as-built condition since the channel is young and does not yet exhibit any hydrological features to evaluate.

5.0References

Baker 2008. UT to Jumping Run Creek Stream and Wetland Restoration Plan Cumberland County, North Carolina. Report prepared by Baker Engineering NY, Inc. for the North Carolina Ecosystem Enhancement Program, Raleigh, NC.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Version 4.2 (http://cvs.bio.unc.edu/methods.htm)

NCEEP. 2010. Procedural Guidance and Content Requirements for EEP Monitoring Reports. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 1.3, January 15, 2010.

NCEEP. 2008. Mitigation Plan Document – Format Data Requirements, and Content Guidelines. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, NC. Version 2.0, March 27, 2008.

Schafale, M.P. and A.S. Weakley, 1990. Classification of the Natural Communities of North Carolina, Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, NCDEHNR, Raleigh, North Carolina.

Rosgen, D. 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, CO.

United States Army Corps of Engineers – Wilmington District, North Carolina Division of Water Quality, United States Environmental Protection Agency – Region IV, Natural Resources Conservation Service, North Carolina Wildlife Resources Commission. 2003. Stream Mitigation Guidelines.

United States Department of Agriculture-Soil Conservation Service, 1984. Soil Survey of Cumberland and Hoke Counties. Raleigh, NC.

6.0Appendices

- Appendix A General Tables and Figures
- Appendix B Morphological Summary Data and Plots
- Appendix C Vegetation Data
- Appendix D As-Built Plan Sheets

Appendix A - General Tables and Figures

Figure 1. Vicinity Map

UT to Jumping Run Creek Stream and Wetland Restoration Project EEP #: 92345 Cumberland County, North Carolina

				Fe
0	1,500	3,000	6,000	9,000

Figure 2b. Project Components and Baseline Monitoring Map

UT to Jumping Run Creek Stream and Wetland Restoration Project EEP #: 92345 Cumberland County, North Carolina December 2010

- + Precipitation gage
- Photo points (Veg=V, Stream=S)
- 🖈 Reference well
- Groundwater monitoring wells (Well 1-15)
- Vegetation monitoring plots (VP 1-12)
- Random transects MY0 (RT 1-5)
- Stream cross-section surveys (XS 1-10)
- Stream stationing

 Headwater system (UT1A) - valley length shown 12 As-built stream restoration centerline MY0 (UT1B) As-built stream enhancement MY0 (UT1C) Proposed wetland features Non-riparian wetland Riparian wetland <u>.sk</u>., Easement boundary

	Table 1a. Project Components UT Jumping Run Creek Restoration Project/EEP Project No. 92345 Project Existing Restantion Footage Nititation Nititation RMP														
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	Mitigation Units	BMP Elements ¹	Comment						
UTIA	9,026 lf	R	CP Headwater	3,657*	10+00 to 47+29	1:1	3,657		Restoration consists of filling the channelized portions of stream and restoring valley topography. The system will be allowed to form on its own, either as a single or briaded channel headwater stream within the valley (DA stream type).						
UT1B		R	PI	3,661	47+29 to 82+19	1:1	3,661		Restoration follows a Rosgen Priority Level I approach. A new meandering channel was constructed across the abandoned floodplain. The old stream channel and drainange ditches were filled.						
UTIC	1,935 lf	E	EI	1,935	82+19 to 101+54	1.5:1	1,290		Stream enhancement is proposed for the area of existing forest on the eastern side of the project. Flows from the restoration reaches were routed into the existing channel that currently flows through this wooded area, with minimal disturbance to the existing vegetation. The existing channel is relatively stable, and restoring the historic stream flow would enhance the functions of the stream reach.						
Riparian Wetland Restoration - field areas along UT1A and UT1B	n/a	R		78.7	~10+00 to 82+39	1:1	78.7		Restoration of wetland hydrology to drained areas of hydric soil. Drainage ditches were filled, microtopography reintroduced, planting of native wetland vegetation, and overbank flooding regimes restored.						
Riparian Wetland Enhancement - along UT1a and UT1B (existing jurisdictional wetland pockets)	3.4 ac	Е		3.4	~16+00 to 60+00	2:1	1.7		Existing jurisdictional wetlands within the farm fields enhanced by raising the local water table, restoring an overbank flooding regime, and planting of native wetland vegetation.						
Non-riparian Wetland Restoration	n/a	R		17.3	~24+00 to 91+00	1:1	17.3		Existing drained hydric soil areas within the farm fields restored by raising the local water table and planting of native wetland vegetation.						

*Footage is based on valley length for this braided system

1 = BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond;

FS = Filter Strip; Grassed Swale = S; LS = Level Spreader; NI = Natural Infiltration Area, O = Other

CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

Table 1b. Component Summations														
UT Jump	ing Run C	reek Resto	oration Pro	ject/EEP	Project No	. 92345								
				Non-										
Restoration	Stream	Ripa	arian	Ripar	Upland	Buffer								
Level	(lf)	Wetlar	nd (Ac)	(Ac)	(Ac)	(Ac)	BMP							
			Non-											
		Riverine	Riverine											
Restoration	7318	78.7		17.3										
Enhancement		3.4												
Enhancement I	1935													
Enhancement II														
Creation														
Preservation					125.9									
HQ Preservation														
Totals (Feet/Acres)	9253	82	2.1	17.3										
MU Totals	8608	80).4	17.3										

Non-Applicable

Table 2. Project Activity and Rep	orting History													
UT Jumping Run Creek Restoration Project/EEP Project No. 92345														
Elapsed Time Since Grading Complete:	2 months													
Elapsed Time Since Planting Complete:	1 month													
Number of Reporting Years ¹ :	0													
	Data Collection	Completion or												
Activity or Deliverable	Complete	Delivery												
Mitigation Plan	Nov 2007	July 2008												
Final Design – Construction Plans	n/a	March 2009												
Construction	n/a	April 2010												
Seeding	n/a	March 2010												
Planting	n/a	April 2010												
As-built (Year 0 Monitoring – baseline)	May 2010	Dec 2010												
Year 1 Monitoring	n/a	n/a												
Year 2 Monitoring	n/a	n/a												
Year 3 Monitoring	n/a	n/a												
Year 4 Monitoring	n/a	n/a												
Year 5 Monitoring	n/a	n/a												

1 = Equals the number of reports or data points produced <u>excluding</u> the baseline

Table 3. Project Contacts Table													
UT Jumping Run Cr	eek Restoration Project/EEP Project No. 92345												
Designer	Michael Baker Engineering, Inc.												
	8000 Regency Pkwy, Ste 200, Cary, NC 27518												
Primary project design POC	Kayne Van Stell (919)463-5488												
Construction Contractor	Backwater Environmental												
	P.O. Box 1654, Pittsboro, NC 27312												
Construction contractor POC	Wes Newell (919) 523-4375												
Survey Contractor	Turner Land Surveying, PLLC												
	3201 Glenridge Drive, Rlaiegh, NC 27604												
Survey contractor POC	L Turner (919) 875-1378												
Planting Contractor	Carolina Silvics, Inc.												
	Indian Trail Rd, Endenton, NC 27932												
Planting contractor POC	Mary-Margaret McKinney (252) 482-8491												
Seeding Contractor	Unknown												
	Unknown												
Contractor point of contact	Unknown												
Seed Mix Sources	Unknown												
	Unknown												
Nursery Stock Suppliers	ArborGen, Coastal Plain, Native Roots, Superior Trees, NCDFR												
Monitoring Performers	Stantec Consulting Services, Inc.												
	801 Jones Franklin Rd, Ste 300, Raleigh, NC 27606												
Stream Monitoring POC	Brian Mazzochi (919) 865-7580												
Vegetation Monitoring POC	Amber Coleman (919)865-7399												
Wetland Monitoring POC	Amber Coleman (919)865-7399												

Table	4. Project	Attribute T	Fable			
UT Jumping Run Creek	Restoratio	on Project /	EEP Proje	ct No. 92345		
Project County	Cumberland					
Physiographic Region	Coastal Plai	n				
Ecoregion	Sandhills					
Project River Basin	Cape Fear					
USGS HUC for Project (14 digit)	0303000409	0010				
NCDWQ Sub-basin for Project	03-06-14					
Within extent of EEP Watershed Plan?	Name the p	lan document	t			
WRC Hab Class (Warm, Cool, Cold)	Warm					
% of project easement fenced or demarcated	100%					
Beaver activity observed during design phase?	Yes					
Restorat	ion Compor	nent Attribu	te Table			
				RW	RW	NRW
	UT1A	UT1B	UT1C	Restoration	Enhancement	Restoration
Drainage area		1.2 sq mi	1	N/A	N/A	N/A
Stream order	1	1	1	N/A	N/A	N/A
Restored length (feet)	3,657	3,661	1,935	N/A	N/A	N/A
Perennial or Intermittent	I	Р	Р	N/A	N/A	N/A
Watershed type (Rural, Urban, Developing etc.)	Rural	Rural	Rural	Rural	Rural	Rural
Watershed LULC Distribution (e.g.)						
Residential		25%		N/A	N/A	N/A
Ag-Livestock		45%		N/A	N/A	N/A
Forested		30%		N/A	N/A	N/A
Watershed impervious cover (%)		<5%		N/A	N/A	N/A
NCDWQ AU/Index number	N/A	N/A	N/A	N/A	N/A	N/A
NCDWQ classification	С	С	C	N/A	N/A	N/A
303d listed?	No	No	No	N/A	N/A	N/A
Upstream of a 303d listed segment?	Yes	Yes	Yes	N/A	N/A	N/A
Reasons for 303d listing or stressor	DO	, FC, metals,	рН	N/A	N/A	N/A
Total acreage of easement				225.3		
Total vegetated acreage within the easement				225.3		
Total planted acreage as part of the restoration	55	E5	175	153.8 N/A	NT/A	NT/A
Rosgen classification of pre-existing	F3	F5 C		IN/A N/A	N/A N/A	IN/A
Kosgen classification of As-built	DA	U V	E/C/DA	IN/A	N/A	IN/A
Valley type	Λ	Δ	A 0.002	IN/A	IN/A	IN/A
Valley side clone ronge (a.g. 2.2.%)	-	0.0011	0.005	IN/A N/A	IN/A N/A	IN/A N/A
Valley side slope range (e.g. 2-3.%)	-	-	-	IN/A N/A	IN/A N/A	IN/A
Cowardin abasification	- N/A	- NI/A	- N/A	N/A Dobustrino	IN/A Dobustrino	N/A Dobustrino
Trout waters designation	N/A	IN/A N/A	IN/A N/A			
Species of concern and angered ate $2 (V/N)$	No.	No	N/A No	No.	No.	No.
Dominant soil series and characteristics	110	110	110	110	110	110
Sarias	Deloss	Debes	Deloss	Deloss	Deloss	Tarboro
Denth (to water table)	+1_1 Off	+1_1 Off	+1_1 0ft	+1-1 Oft	+1_1 Oft	>6ft
	3_35%	3_35%	3_35%	3_35%	3_35%	2_12%
K K	0.24	0.24	0.24	0.24	0.24	0.1
T	5	5	5	5	5	5
			-			

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown RW = Riparian wetland, NRW = Non-riparian wetland

Appendix B – Morphological Summary Data and Plots

Table 5a. Baseline Stream Data S UT Jumping Run Creek Restoration Project/EEP Project No. 923														. /			(0.0.0										
	2	UIJu	umping	g Run	Creek	Restor	ation F	roject	/EEP	Projec	ct No. 9	92345	- Seg	ment/l	Reach	: UI1k	o (366	1 feet)									
Parameter	Gauge ⁻	Reg	ional C	Curve		Pre-E	existing	Cond	tion			Refere	ence Re	each(es	s) Data			Design			Мо	nitoring	g Base	line			
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n		
Bankfull Width (ft))				12.10	15.23	13.01	20.55	3.95	5	-	-	-	-	-	-	-	13.4	-	14.02	15.98	15.75	18.48	1.32	8		
Floodprone Width (ft))				15.59	18.68	17.51	23.94	3.62	5	-	-	-	-	-	-	-	100+	-	103.50	187.94	200.00	200.00	34.12	8		
Bankfull Mean Depth (ft))				0.54	0.77	0.86	0.94	0.19	5	-	-	-	-	-	-	-	0.9	-	0.53	0.82	0.75	1.40	0.26	8		
¹ Bankfull Max Depth (ft))				0.87	1.18	1.17	1.45	0.25	5	-	-	-	-	-	-	-	1.1	-	0.98	1.35	1.25	2.27	0.39	8		
Bankfull Cross Sectional Area (ft ²))				10.97	11.23	11.13	11.80	0.33	5	7.80	51.85	51.85	95.90	-	2	-	12.0	-	7.41	13.35	11.74	25.96	5.48	8		
Width/Depth Ratio	þ				12.47	21.84	15.20	37.78	11.53	5	8.00	11.00	11.00	14.00	-	2	-	15.0	-	13.20	20.53	20.94	26.45	3.97	8		
Entrenchment Ratio)				1.13	1.25	1.29	1.35	0.09	5	4.00	8.50	8.50	13.00	-	2	8.0	10.0	12.0	7.35	12.85	12.53	21.58	4.00	8		
¹ Bank Height Ratio	þ				2.94	4.14	4.29	5.45	0.95	5	1.00	1.15	1.15	1.30	-	2	-	1.0	-	1	1	1	1	0	8		
Profile	-		-					1	1		-		1		1	1		1					1				
Riffle Length (ft))				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	31.4	49.71	48.08	78.46	11.12	32		
Riffle Slope (ft/ft))				-	-	-	-	-	-	-	-	-	-	-	-	0.001	0.003	0.005	2E-04	0.467	0.005	6	1.662	13		
Pool Length (ft))				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	27.7	59.89	61.4	96	18.34	30		
Pool Max depth (ft))				-	-	-	-	-	-	-	-	-	-	-	-	-	1.9	-	0.865	1.496	1.572	2.395	0.391	30		
Pool Spacing (ft))				-	-	-	-	-	-	-	-	-	-	-	-	38	61.5	85	79	106.5	104	143	17.09	29		
Pattern			-																-			-					
Channel Beltwidth (ft))				-	-	-	-	-	-	-	-	-	-	-	-	38	79.0	120	40.15	70.42	69.35	96.96	13.68	26.00		
Radius of Curvature (ft))				-	-	-	-	-	-	-	-	-	-	-	-	30	40.0	50	32.49	41.47	39.95	55.87	6.35	30.00		
Rc:Bankfull width (ft/ft))				-	-	-	-	-	-	1.5	-	2.25	3	-	-	2	2.8	3.5	2.32	2.59	2.54	3.02	-	-		
Meander Wavelength (ft))				-	-	-	-	-	-	-	-	-	-	-	-	70	120	170	152.37	179.88	176.05	228.52	23.44	14.00		
Meander Width Ratio	þ				-	-	-	-	-	-	2	-	4.15	6.3	-	-	3.5	5.8	8	2.86	4.41	4.40	5.25	-	-		
Transport parameters	-																-										
Reach Shear Stress (competency) lb/f ²	2						-											0.03				0.0	056				
Max part size (mm) mobilized at bankful	I						-											-					-				
Stream Power (transport capacity) W/m ²	2						-											0.026				0.	69				
Additional Reach Parameters																											
Rosgen Classification	n						F5	5					E5	/C5				C5c				С	5c				
Bankfull Velocity (fps))						-											0.78					-				
Bankfull Discharge (cfs))						9.4	4																			
Valley length (ft))						-							-													
Channel Thalweg length (ft))						650)1						-				3400				36	61				
Sinuosity (ft))						1.0	17					1.22	/1.77				1.2				1	.2				
Water Surface Slope (Channel) (ft/ft))						0.00	06										0.0016				0.00)124				
BF slope (ft/ft))						-											-				0.00	0137				
³ Bankfull Floodplain Area (acres))						-				-							-		-							
⁴ % of Reach with Eroding Banks	6										-																
Channel Stability or Habitat Metric	>				-							-															
Biological or Other	r						-				-																

Shaded cells indicate that these will typically not be filled in.

1= The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2=For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = P roportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 5b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distril
UT Jumping Run Creek Restoration Project/EEP Project No. 92345 - Segment/Reach: UT1b (3661 feet)

Parameter		Pre	-Exis	ting C	Condit	ion		Reference Reach(es) Data									C	Desig	n		As-built/Baseline						
¹ Ri% / Ru% / P% / G% / S%	- 1	0	-	0	0			-	-	-	-	-			-	-	-	-	-		52	-	48	-	-		
¹ SC% / Sa% / G% / C% / B% / Be%	0	33	67	0	0	0		0	100	0	0	0	0														
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm	0.14	0.26	0.5	4.4	7.3	-	30	0.3	0.4	0.5	0.9	1.2	-	-													
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10) -	-	-	-	-			-	-	-	-	-									-	-	-	-	-		
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0) -	-	-	-				-	-	-	-										-	-	-	-			

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary. The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design survey), however, these subsamples have of the design survey), however, these subsamples have often focused entirely on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

butions)

Table 6a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters – Cross Sections) UT Jumping Run Creek Restoration Project/EEP Project No. 92345 - Segment/Reach: UT1b (3661 feet)																																						
					UIJ	umpii	ng Ri	in Cre	ек К	estor	ation	Proje	ct/EE	P Pro	oject	NO. 9	2345	- Seg	ment/	/Reac	h: UI	1b (36	661 te	eet)														
		C	Cross S	Section	1 (Riffl	le)			0	Cross S	Section	2 (Poo	l)			C	ross S	ection	3 (Riff	le)			C	ross S	ection	4 (Poo	ol)		Cross Section 5 (Riffle)									
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+			
Record elevation (datum) used	1 150.47 150.58 149.75																		149.34							149.02					Τ	T						
Bankfull Width (ft)	15.60)		19.33 15.50																	18.22							15.90					T					
Floodprone Width (ft)	200+		200+												200+							200+							200+									
Bankfull Mean Depth (ft)	0.83							1.12							0.76							1.23							0.74									
Bankfull Max Depth (ft)	1.31							2.25							1.14							2.20							1.41									
Bankfull Cross Sectional Area (ft ²)	12.90							21.57							11.71							22.42							11.69									
Bankfull Width/Depth Ratio	18.73							17.26							20.90							14.81							21.49									
Bankfull Entrenchment Ratio	12.82							10.35							12.90							10.98							12.58									
Bankfull Bank Height Ratio	1.00							1.00							1.00							1.00							1.00									
Cross Sectional Area between end pins (ft ²)	16.50							26.30							13.60							32.10							19.00									
d50 (mm))																																					
		C	Cross S	Section	6 (Riffl	e)			C	ross S	ection	7 (Riffl	e)			C	ross S	ection	8 (Riff	le)			C	cross S	ection	9 (Poo	ol)			С	ross S	ection	10 (Po	ol)				
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+			
Record elevation (datum) used	148.61							148.09							147.20							146.97							145.87					1	1			
Bankfull Width (ft)	16.39	9			1			16.87							15.10							18.48							14.02				1	1	1			
Floodprone Width (ft)	200+							200+							200+							200+							103.50									
Bankfull Mean Depth (ft)	0.89							0.70							0.72							1.40							0.53									
Bankfull Max Depth (ft)	1.23							1.21							1.26							2.27							0.98	í T				1	1			
Bankfull Cross Sectional Area (ft ²)	14.51							11.77							10.81							25.96							7.41									
Bankfull Width/Depth Ratio	18.42							24.10							20.97							13.20							26.45									
Bankfull Entrenchment Ratio	12.20							11.86							13.25							10.82							7.38									
Bankfull Bank Height Ratio	1.00							1.00							1.00							1.00							1.00									
Cross Sectional Area between end pins (ft ²)	pins (ft ²) 24.30 13.10 17.													17.20							40.10							85.50										
d50 (mm))																																					

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring hi Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."
									UT	Jump	oing R	E un C	xhibi reek	t Tabl Resto	le 6b. ratio	Mon n Proi	itorin ject/E	ig Da EP P	ta - Si rojeci	tream t No. 9	Read 92345	ch Da 5 - Seg	ta Su gmen	mmar t/Rea	y ch: U	 T1b
Parameter			Bas	eline				MY-1					MY-2				MY- 3									
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mea
Bankfull Width (ft)	14.02	15.98	15.75	18.48	1.321	8																				
Floodprone Width (ft)	103.5	187.9	200	200	34.12	8					1	ĺ														
Bankfull Mean Depth (ft)	0.53	0.821	0.75	1.4	0.256	8																				
¹ Bankfull Max Depth (ft)	0.98	1.351	1.245	2.27	0.392	8																				
Bankfull Cross Sectional Area (ft ²)	7.41	13.35	11.74	25.96	5.48	8																				
Width/Depth Ratio	13.2	20.53	20.94	26.45	3.972	8																				
Entrenchment Ratio	7.35	12.85	12.53	21.58	4.003	8																				
¹ Bank Height Ratio	1	1	1	1	0	8																				
Profile																										
Riffle Length (ft)	31.4	49.71	48.08	78.46	11.12	32	Ι		1		Ι	1														
Riffle Slope (ft/ft)	2E-04	0.467	0.005	6	1.662	13																				
Pool Length (ft)	27.7	7 59.89	61.4	96	18.34	30																				
Pool Max depth (ft)	0.865	5 1.496	1.572	2.395	0.391	30																				
Pool Spacing (ft)	79	106.5	104	143	17.09	29																				
Pattern																										
Channel Beltwidth (ft)	40.15	70.42	69.35	96.96	13.68	26																				
Radius of Curvature (ft)	32.49	41.47	39.95	55.87	6.348	30										[
Rc:Bankfull width (ft/ft)	2.317	2.594	2.536	3.023	-	-										Pattern	data wi	ill not ty	pically b	e collect sia	ed unle nificant	ss visua shifts fro	il data, c om base	limensic	nal data	ı or pr
Meander Wavelength (ft)	152.4	179.9	176.1	228.5	23.44	14												-		3						
Meander Width Ratio	2.864	4.406	4.403	5.247	-	-																				
Additional Reach Parameters							_																			
Rosgen Classification			С	5c																						
Channel Thalweg length (ft)			34	171																						
Sinuosity (ft)			1	.2																						
Water Surface Slope (Channel) (ft/ft)			0.00	0124																						
BF slope (ft/ft)			0.00	0137																						
³ Ri% / Ru% / P% / G% / S%	52	0	48	0	0																					
³ SC% / Sa% / G% / C% / B% / Be%																										
³ d16 / d35 / d50 / d84 / d95 /																										
² % of Reach with Eroding Banks				-																						
Channel Stability or Habitat Metric	tric -																									
Biological or Other	her -																									
Objected and a site in disease the state and will be missely up at her	fills at its																									

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
4. = Of value/needed only if the n exceeds 3

b (3	3661 f	eet)								
	MY	- 4					MY	′ - 5		
ean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n
_										
nrofi		ndiaata								
pron	ie data i	ndicate								

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-1, Riffle, STA 48+81
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

	M	/00	M	IY01	N	1Y02	M	Y03	M	Y04	M	/05
44	Station	Elevation										
	22.84	150.99										
	23.93	150.7										
***	31.43	150.71										
	41.41	150.57										
	45.73	150.42										
	49.1	150.34										
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	51.9	150.48										
	53.65	150.49										
	55.09	150.11										
	56.24	149.81										
	57.05	149.57										
1.25	57.45	149.42										
a la	57.86	149.26										
1.1	58.99	149.16										
	60.1	149.16										
	61.1	149.2										
	62.24	149.18										
	63.2	149.33										
	64.34	149.4										
	65.05	149.6										
	65.61	149.71										
	67.42	150.08										
	68.9	150.42										
	69.34	150.47										
	71.02	150.46										
	75.41	150.3										
	79.57	150.29										
	83.53	150.3										
	84.44	150.7										
	86.27	150.33										

				Sta 48+8	1 Looking D	ownstream
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05
Bankfull Elevation	150.47					
Bankfull Cross-Sectional Area	12.9					
Bankfull Width	15.6					
Flood Prone Area Elevation	151.78					
Flood Prone Width	200					
Max Depth at Bankfull	1.31					
Mean Depth at Bankfull	0.83					
W/D Ratio	18.73					
Entrenchment Ratio	12.86					
Bank Height Ratio	1.0					
Stream Type	С					

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-2, Pool, STA 50+30
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

					j		
				Sta 50+3	0 Looking D	ownstream	
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05	1
Bankfull Elevation	150.58						1
Bankfull Cross-Sectional Area	21.57						
Bankfull Width	19.33						
Flood Prone Area Elevation	152.82						
Flood Prone Width	200						
Max Depth at Bankfull	2.25						
Mean Depth at Bankfull	1.12						
W/D Ratio	17.26						
Entrenchment Ratio	10.35]
Bank Height Ratio	1.0]
Stream Type	C						

M	Y00	M	Y01	M	/02	M	/03	M	/04	M	/05
Station	Elevation										
33.17	150.54										
34.39	150.82										
34.86	150.48										
39.92	150.45										
45	150.52										
48.41	150.6										
50.8	150.59										
50.93	150.58										
52.37	150.39										
53.59	150.12										
54.32	150.06										
55.03	149.6										
55.37	149.37										
56.04	149.08										
56.61	148.66										
56.93	148.49										
57.99	148.34										
59.16	148.49										
60.19	148.64										
61.79	148.95										
63.15	149.06										
63.76	149.29										
65.43	149.63										
67.39	149.91										
69.34	150.32										
70.67	150.67										
74.67	150.46										
78.72	150.34										
80.3	150.43										
80.56	150.84										
86.93	150.34										

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-3, Riffle, STA 54+98
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

M	Y00	M	Y01	M	MY02 MY03 MY04				MY05		
Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation
50.31	149.47										
52 37	149.88										
52.57	149 5										
57.38	149.45										
60.52	149.61										
64.53	149.63										
66.87	149.78										
68.88	149.75										
69.74	149.56							1			
70.98	149.31										
72.43	149.07										
73.48	148.83										
74.45	148.69										
75.49	148.65										
76.56	148.63										
77.68	148.63										
78.65	148.63										
79.71	148.61										
80.16	148.73										
80.81	148.91										
82.01	149.14										
83.76	149.51										
84.84	149.93										
85.99	149.87										
87.04	149.75										
89.46	149.86										
92.58	149.85										
95.06	149.9										
96.36	149.97										
96.38	150.37										
- Flood Pro	one Area Ele	vation ····	•••• Bankfull	Elevation							
	70						0	0			
	Station (ft)		80			9	U			

				Sta 54+9	8 Looking D	ownstream
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05
Bankfull Elevation	149.75					
Bankfull Cross-Sectional Area	11.71					
Bankfull Width	15.50					
Flood Prone Area Elevation	150.89					
Flood Prone Width	200.00					
Max Depth at Bankfull	1.14					
Mean Depth at Bankfull	0.76					
W/D Ratio	20.90					
Entrenchment Ratio	12.91					
Bank Height Ratio	1.00					
Stream Type	С					

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-4, Pool, STA 59+09
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

MY00		MY01		MY02		MY03		MY04		MY05	
Station	Elevation										
35.83	149.76										
36.19	149.5										
41.66	149.43										
47.94	149.53										
53.48	149.49										
58.28	149.36										
60.99	148.95										
63.04	148.61										
65.1	148.21										
67.01	147.55										
68.95	147.24										
70.73	147.14										
71.83	147.18										
73.5	147.64										
74.87	148.18										
75.08	148.39										
75.7	148.87										
76.63	149.34										
77.37	149.34										
78.21	149.38										
80.92	149.48										
84.67	149.55										
88.81	149.73										
91.55	149.57										
94.93	149.69										
95.51	150.15										
98.39	149.9										

				Sta 59+09 Looking Downstream			
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05	
Bankfull Elevation	149.34						
Bankfull Cross-Sectional Area	22.42						
Bankfull Width	18.22						
Flood Prone Area Elevation	151.54						
Flood Prone Width	200.00						
Max Depth at Bankfull	2.20						
Mean Depth at Bankfull	1.23						
W/D Ratio	14.81						
Entrenchment Ratio	10.98						
Bank Height Ratio	1.00						
Stream Type	С						

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-5, Riffle, STA 62+87
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

ิล	62+87	Looking	Downstream

				Sta 62+8	37 Looking	Downstream
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05
Bankfull Elevation	149.02					
Bankfull Cross-Sectional Area	11.69					
Bankfull Width	15.9					
Flood Prone Area Elevation	200+					
Flood Prone Width	200					
Max Depth at Bankfull	1.41					
Mean Depth at Bankfull	0.74					
W/D Ratio	21.49					
Entrenchment Ratio	12.58					
Bank Height Ratio	1					
Stream Type	С					

M	Y00	M	Y01	M	/02	M	<i>(</i> 03	M	Y04	M	/05
Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation
44.7	149.16										
44.93	149.48										
47.23	149.18										
53.66	149.17										
58.24	149.05										
61.29	148.97										
63.55	148.92										
64.46	149.02										
65.18	148.85										
66.49	148.3										
67.17	147.96										
68.59	147.83										
69.5	147.86										
70.23	147.7										
71.2	147.61										
72.18	147.78										
72.54	147.89										
73.5	147.94										
74.43	147.96										
74.91	148.28										
76.61	148.62										
77.27	148.88										
79.38	149										
80.42	149.01										
83.37	148.98										
87.22	149.09										
90	149.07										
91	149.13										

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-6, Riffle, STA 65+44
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

M	Y00	N	/1Y01	ſ	VIY02	N	AY03	MY04		MY05	
Station	Elevation										
42.43	149.16										
42.74	148.68										
45.36	148.68										
49.9	148.71										
56.07	148.56										
61.78	148.52										
63.85	148.53										
64.56	148.3										
65.93	147.95										
67.33	147.65										
68.06	147.51										
69.22	147.46										
69.8	147.4										
70.94	147.39										
72.49	147.41										
73.8	147.4										
75.03	147.38										
75.98	147.49										
76.63	147.62										
77.27	147.76										
78.21	148.12										
79.28	148.4										
80.39	148.61										
82.03	148.73										
84.97	148.72										
86.87	148.6										
89.69	148.75										
95.36	148.83										
98.02	149.47										
98.17	149.11										
99.75	149.07										

				Sta 65+44 Looking Downstream				
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05		
Bankfull Elevation	148.61							
Bankfull Cross-Sectional Area	14.51							
Bankfull Width	16.39							
Flood Prone Area Elevation	149.84							
Flood Prone Width	200.00							
Max Depth at Bankfull	1.23							
Mean Depth at Bankfull	0.89							
W/D Ratio	18.42							
Entrenchment Ratio	12.20							
Bank Height Ratio	1.00							
Stream Type	С							

UT to Jumping Run Creek, Reach UT1B X-Section 6, Riffle, Station 65+44 - As Built MY00 - MY01 - Flood Prone Area Elevation •••••• Bankfull Elevation 149.5 (ft) (ft) (ft) 147.5 Station (ft)

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-7, Riffle, STA 68+24
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

M	Y00	M	Y01	M	Y02	M	Y03	MY04		MY05	
Station	Elevation										
110.41	147.98										
123.54	147.92										
129.8	148.17										
129.95	147.8										
134.5	147.78										
142.25	147.96										
145.91	148.09										
148.49	148.03										
149.22	147.73										
150.88	147.25										
151.62	146.96										
152.18	146.95										
153.51	146.95										
154.78	146.91										
156.05	146.9										
157.36	146.88										
157.76	146.99										
158.39	147.04										
159.46	147.39										
161.88	147.97										
163.39	148.2										
167.73	148.19										
178.68	148.05										
181.92	148.43										

				Sta 68+24 Looking Downstream			
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05	
Bankfull Elevation	148.09						
Bankfull Cross-Sectional Area	11.77						
Bankfull Width	16.87						
Flood Prone Area Elevation	149.30						
Flood Prone Width	200.00						
Max Depth at Bankfull	1.21						
Mean Depth at Bankfull	0.70						
W/D Ratio	24.10						
Entrenchment Ratio	11.86						
Bank Height Ratio	1.00						
Stream Type	С						

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-8, Riffle, STA 74+84
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

M	Y00	М	Y01	N	1402	М	Y03	М	Y04	M	Y05
Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation
37.56	147.62										
37.71	147.15										
39.04	147.14										
43	147.13										
46.92	146.93										
50.07	147.13										
51.69	147.2										
52.45	147.18										
52.99	146.81	ł		4	-	-		-			
55.04	146.53										
55.45	146.22	ł		1	-						
57.33	140.12										
58.84	146.2										
59.45	145.94										
60.26	146.07										
60.77	146.18			1							
61.89	146.04										
62.09	146.21										
63.17	146.19										
63.79	146.68										
65.03	147.11										
66.76	147.14										
68.47	147.08				-						
72.26	147.29										
/8.25	147.38 147 E	1		1	1						ł
84.76	147.5					1		1			
84.70	147.91										
85.1	147.48										
- Flood Pron	ne Area Eleva	ation •••••	•• Bankfull E	levation							
	60 Station /ft	N		70			80			90)

				Sta 74+84 Looking Downstream				
SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05		
Bankfull Elevation	147.20							
Bankfull Cross-Sectional Area	10.81							
Bankfull Width	15.10							
Flood Prone Area Elevation	148.46							
Flood Prone Width	200.00							
Max Depth at Bankfull	1.26							
Mean Depth at Bankfull	0.72							
W/D Ratio	20.97							
Entrenchment Ratio	13.25							
Bank Height Ratio	1.00							
Stream Type	С							

UT to Jumping Run Creek, Reach UT1B X-Section 8, Riffle, Station 74+84

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-9, Pool, STA 75+30
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

Sta 75+30 Looking Downstream

SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05
Bankfull Elevation	146.97					
Bankfull Cross-Sectional Area	25.96					
Bankfull Width	18.48					
Flood Prone Area Elevation	149.24					
Flood Prone Width	200.00					
Max Depth at Bankfull	2.27					
Mean Depth at Bankfull	1.40					
W/D Ratio	13.20					
Entrenchment Ratio	10.82					
Bank Height Ratio	1.00					
Stream Type	С					

M	Y00	M	Y01	M	Y02	M	/03	MY04		MY05	
Station	Elevation										
45.86	147.1										
54.31	147.84										
54.32	147.83										
55.41	147.22										
59.39	147.13										
63	147.03										
66.74	146.97										
67.78	146.53										
68.5	146.07										
69.12	145.78										
69.51	145.47										
70.56	144.94										
72.81	144.72										
74.08	144.7										
75.57	144.86										
76.93	144.88										
78.23	145.13										
80.13	145.71										
80.85	145.97										
80.94	145.97										
83.22	146.56										
85.42	147.01										
86.79	146.95										
89.91	147.01										
94.51	147.04										
99.95	146.99										
101.78	147.67										
101.83	147.71										
101.85	147.66										
101.87	147.72										
104.58	147.17										

River Basin	Cape Fear River
Watershed	Jumping Run Creek
XS ID	XS-10, Riffle, STA 80+45
Drainage Area(sq. mi.)	1.2
Date	5/4/2010
Field Crew	N. Jean

M	Y00	M	Y01	M	Y02	M	Y03	M	Y04	M	/05
Station	Elevation										
130.01	146.53										
132.86	147.07										
133.28	146.47										
134.96	146.33										
139.81	146.04										
144.59	146.04										
148.52	145.99										
150.69	145.93										
151.61	145.81										
152.74	145.49										
153.24	145.45										
154.14	145.34										
154.97	145.28										
156.22	145.05										
157.37	144.89										
158.39	144.94										
158.76	145.08										
159.62	145.19										
160.2	145.14										
161.14	145.22										
162.05	145.39										
163.22	145.64										
165.17	145.87										
166.62	145.95										
169.52	145.94										
172.89	146.13										
176.87	146.12										
178.93	146.66										
179.52	146.25										

SUMARY DATA	MY00	MY01	MY02	MY03	MY04	MY05
Bankfull Elevation	145.87					
Bankfull Cross-Sectional Area	7.41					
Bankfull Width	14.02					
Flood Prone Area Elevation	146.85					
Flood Prone Width	103.50					
Max Depth at Bankfull	0.98					
Mean Depth at Bankfull	0.53					
W/D Ratio	26.45					
Entrenchment Ratio	7.38					
Bank Height Ratio	1.00					
Stream Type	С					

UT to Jumping Run Creek, Reach UT1B X-Section 10, Riffle, Station 80+45

UT to Jumping Run Creek, Reach UT1B Longitudinal Profile, As-built, STA 47+45 t0 82+10

+ Year00 RTOB × Year00 LTOB -----Year00 Thalweg

Stream Monitoring Photos

Photo Station S1 – Stream channel looking downstream at cross-section 1 Station 48+81 (5/4/2010 Year 0)

Photo Station S2 –Stream channel looking downstream at cross-section 2 Station 50+30 (5/4/2010 Year 0)

Photo Station S3 – Stream channel looking downstream at cross-section 3 Station 54+98 (5/4/2010 Year 0)

Photo Station S4 – Stream channel looking downstream at cross-section 4 Station 59+09 (5/4/2010 Year 0)

Photo Station S5 – Stream channel looking downstream at cross-section 5 Station 62+87 (5/4/2010 Year 0)

Photo Station S6 – Stream channel looking downstream at cross-section 6 Station 65+44 (5/4/2010 Year 0)

Photo Station S7 – Stream channel looking downstream at cross-section 7 Station 68+24 (5/4/2010 Year 0)

Photo Station S8 – Stream channel looking downstream at cross-section 8 Station 74+84 (5/4/2010 Year 0)

Photo Station S9 – Stream channel looking downstream at cross-section 9 Station 75+30 (5/4/2010 Year 0)

Photo Station S10 – Stream channel looking downstream at cross-section 10 Station 80+45 (5/4/2010 Year 0)

Photo Station S11 – Stream channel looking downstream at upper road crossing (4/26/2010 Year 0)

Photo Station S12 – Stream channel looking upstream at upper road crossing (4/26/2010 Year 0)

Appendix C - Vegetation Data

	Table 7. Vegetation Plot Attribute Data									
	UT Jumping Run Creek Stream and Wetland Restoration - EEP #92345									
				Associated		CVS				
Plot ID	Community Type	Planting Zone ID	Reach ID	Gauge(s)	Method	Level				
1	Headwater riparian	Headwater riparian	UT1a	GW1	CVS	1				
2	Transitional	Transitional	UT1a	N/A	CVS	1				
3	Headwater riparian	Headwater riparian	UT1a	N/A	CVS	1				
4	Upland/non-riparian	Upland/non-riparian	UT1a	N/A	CVS	1				
5	Headwater riparian	Headwater riparian containerized	UT1a	GW6	CVS	1				
6	Transitional	Transitional	UT1a	N/A	CVS	1				
7	Riparian	Riparian	UT1b	GW8	CVS	1				
8	Riparian	Riparian	UT1b	GW9	CVS	1				
9	Upland/non-riparian	Upland/non-riparian	UT1b	GW10	CVS	1				
10	Riparian	Riparian	UT1b	GW11	CVS	1				
11	Riparian	Riparian containerized	UT1b	GW12	CVS	1				
12	Riparian	Riparian	UT1b	GW14, GW15	CVS	1				
RT1	Headwater riparian	Headwater riparian containerized	UT1a	N/A	Random transect	N/A				
RT2	Riparian	Riparian containerized	UT1a	GW8	Random transect	N/A				
RT3	Upland/non-riparian	Upland/non-riparian	UT1b	GW13	Random transect	N/A				
RT4	Upland/non-riparian	Upland/non-riparian	UT1b	N/A	Random transect	N/A				
RT5	Upland/non-riparian	Upland/non-riparian containerized	UT1a	GW7	Random transect	N/A				

Table 8 - CVS Metadata								
UT Jumping Run Cree	k Stream and Wetland Restoration - EEP #92345							
Report Prepared By	Kristin Weidner							
Date Prepared	9/29/2010 15:16							
Database name	Stantec_UTJRC2010_A.mdb							
Database location	U:\175613003\UT_Jumping_Run\project\site_data\monitoring							
Computer name	WEIDNERK							
File size	35987456							
DESCRIPTION OF WORKSHEETS	IN THIS DOCUMENT							
	Description of database file, the report worksheets, and a							
Metadata	summary of project(s) and project data.							
	Each project is listed with its PLANTED stems per acre, for							
Proj, planted	each year. This excludes live stakes.							
	Each project is listed with its TOTAL stems per acre, for each							
	year. This includes live stakes, all planted stems, and all							
Proj, total stems	natural/volunteer stems.							
	List of plots surveyed with location and summary data (live							
Plots	stems, dead stems, missing, etc.).							
Vigor	Frequency distribution of vigor classes for stems for all plots.							
Vigor by Spp	Frequency distribution of vigor classes listed by species.							
	List of most frequent damage classes with number of							
Damage	occurrences and percent of total stems impacted by each.							
Damage by Spp	Damage values tallied by type for each species.							
Damage by Plot	Damage values tallied by type for each plot.							
	A matrix of the count of PLANTED living stems of each species							
Planted Stems by Plot and Spp	for each plot; dead and missing stems are excluded.							
PROJECT SUMMARY								
Project Code	92345							
Project Name	UT to Jumping Run Creek							
Description	stream and wetland restoration							
River Basin								
Length(ft)								
Stream-to-edge width (ft)								
Area (sq m)								
Required Plots (calculated)								
Sampled Plots	12							

	Table 9 - CVS Vigor by Species									
UT Ju	Imping Run Creek Strea	m and	l We	tlar	d R	esto	ration - E	EP #92345		
	Species	4	3	2	1	0	Missing	Unknown		
	Aronia arbutifolia		2							
	Chamaecyparis thyoides	12								
	Diospyros virginiana	5								
	Fraxinus pennsylvanica	11								
	Nyssa biflora	17	2							
	Persea borbonia			1						
	Persea palustris	1	2							
	Pinus palustris	4	1							
	Quercus falcata	2								
	Quercus lyrata	4								
	Quercus nigra	1								
	Quercus phellos	9	3							
	Taxodium distichum	7								
	Quercus	1	12	1						
	Liriodendron tulipifera	11		1						
	Magnolia virginiana	8	3		1					
	Unknown		1							
TOT:	17	93	26	3	1					

Table 10 - CVS Vegetation Damage by Species									
UT Jumping Run Creek Stream and Wetland Restoration - EEP #92345									
Sol	Composition	So	In or Compage C	Unit. (a)	and the second sec				
Aronia arbutifolia	Red Chokeberry	0	2						
Chamaecyparis thyoides	Atlantic white cedar	0	12						
Diospyros virginiana	common persimmon	0	5						
Fraxinus pennsylvanica	green ash	0	11						
Liriodendron tulipifera	tuliptree	0	12						
Magnolia virginiana	sweetbay	1	11	1					
Nyssa biflora	swamp tupelo	0	19						
Persea borbonia	redbay	0	1						
Persea palustris	swamp bay	0	3						
Pinus palustris	longleaf pine	0	5						
Quercus	oak	0	14						
Quercus falcata	southern red oak	0	2						
Quercus lyrata	overcup oak	0	4						
Quercus nigra	water oak	0	1						
Quercus phellos	willow oak	0	12						
Taxodium distichum	bald cypress	0	7						
Unknown		0	1						
TOT: 17	16	1	122	1					

Table 11 - CVS Vegetation Damage by Plot										
UT Jumping Run Creek Stream and Wetland Restoration - EEP #92345										
jo control of control										
	92345-01-0001	1	13	1						
	92345-01-0002	0	7							
	92345-02-0003	0	11							
	92345-02-0004	0	7							
	92345-02-0005	0	15							
	92345-02-0006	0	14							
	92345-02-0007									
	92345-02-0008	0	8							
	92345-02-0009	0	8							
	92345-02-0010	0	10							
	92345-02-0011	0	11							
	92345-02-0012	0	9							
TOT:	12	1	122	1						

Table 12a - CVS Planted Stems by Plot and Species																		
UT Jumping Run Creek Stream and Wetland Restoration - EEP #92345																		
	65	Soccies	⁷ oiar	* DIS DISTING	dina diana	Dior Sterns	Nor C 101	Nor C 10.201	NOr C 2000	Nor C 2235 003	Nor C 22.02	Nor C. P. D.	Nor C. P. D.	Nor C. P.	No. 2 P.	Nor 2 423 4200	Nor 2 235 000	5400-3355 A.
		Aronia arbutifolia	2	2	1	1				1								
		Chamaecyparis thyoides	12	4	3	1	2	4		5								
		Diospyros virginiana	5	1	5						5							
		Fraxinus pennsylvanica	11	3	3.7			1		6				4				
		Liriodendron tulipifera	12	7	1.7		1				1	1	2		4	2	1	
		Magnolia virginiana	12	6	2	1	3	2			2	3	1					
		Nyssa biflora	19	7	2.7	4			2	1		3	4		1	4		
		Persea borbonia	1	1	1							1						
		Persea palustris	3	3	1	1		1									1	
		Pinus palustris	5	2	2.5						1			4				
		Quercus	14	6	2.3	5	1	1	5	1					1			
		Quercus falcata	2	1	2						2							
		Quercus lyrata	4	4	1	1				1		1					1	
		Quercus nigra	1	1	1												1	
		Quercus phellos	12	4	3			2							3	3	4	
		Taxodium distichum	7	4	1.8						3				1	2	1	
		Unknown	1	1	1								1					
TOT:	0	17	123	17		14	7	11	7	15	14	9	8	8	10	11	9	
		Stems per acre				567	283	445	283	607	567	364	324	324	405	445	364	

Table 12b - Random Transect Planted Stems by Transect and Species									
UT Jumping Run Creek Stream and Wetland Restoration - EE #92345									
Species	RT1 RT2 RT3 RT4 RT								
Quercus sp	5		4	3	4				
Quercus nigra (container)	1								
llex glabra	1								
Persea palustris	1			1					
Nyssa biflora	3				1				
Carpinus caroliniana	1		1						
Magnolia virginiana	3			1					
Chameocyparis thyoides	1								
Quercus lyrata		1							
Taxodium distichum		7							
Quercus lyrata (container)		1							
Nyssa biflora (container)		1							
Unknown			1	3	1				
Quercus phellos				1					
Cercis canadensis				1					
Cornus florida				2	4				
Fraxinus pennsylvanica					5				
Quercus nigra					1				
Pinus palustris					1				
Total:	16	10	6	12	17				
Stems per acre	648	405	243	486	688				

Vegetation Monitoring Plot Photos

Photo Station V1 - Veg Plot 1 looking west (4/26/2010 Year 0)

Photo Station V2 - Veg Plot 1 looking southwest (4/26/2010 Year 0)

Photo Station V3 - Veg Plot 2 looking south (4/26/2010 Year 0)

Photo Station V4 - Veg Plot 2 looking southeast (4/26/2010 Year 0)

Photo Station V5 - Veg Plot 3 looking southeast (4/26/2010 Year 0)

Photo Station V6 - Veg Plot 3 looking east (4/26/2010 Year 0)

Photo Station V7 - Veg Plot 4 looking northwest (4/26/2010 Year 0)

Photo Station V8 - Veg Plot 4 looking west (4/26/2010 Year 0)

Photo Station V9 - Veg plot 5 looking southwest (4/26/2010 Year 0)

Photo Station V10 - Veg plot 5 looking south (4/26/2010 Year 0)

Photo Station V11 - Veg plot 6 looking northeast (4/26/2010 Year 0)

Photo Station V12 - Veg plot 6 looking north (4/26/2010 Year 0)

Photo Station V13 - Veg plot 7 looking north (4/26/2010 Year 0)

Photo Station V14 - Veg plot 7 looking northwest (4/26/2010 Year 0)

Photo Station V15 - Veg plot 8 looking northeast (4/26/2010 Year 0)

Photo Station V16 - Veg plot 8 looking north (4/26/2010 Year 0)

Photo Station V17 - Veg plot 9 looking southwest (4/26/2010 Year 0)

Photo Station V18 - Veg plot 9 looking south (4/26/2010 Year 0)

Photo Station V19 - Veg plot 10 looking northeast (4/26/2010 Year 0)

Photo Station V20 - Veg plot 10 looking north (4/26/2010 Year 0)

Photo Station V21 - Veg plot 11 looking southwest (4/26/2010 Year 0)

Photo Station V22 - Veg plot 11 looking south (4/26/2010 Year 0)

Photo Station V23 - Veg plot 12 looking southwest (4/26/2010 Year 0)

Photo Station V24 - Veg plot 12 looking south (4/26/2010 Year 0)

Appendix D - As-Built Plan Sheet

<u>REFE</u> <u>0</u>V N

EΧ IN

<u>GENERAL NC</u>

- 1. ALL DISTAN OTHERWIS
- 2. THE VERTIC 3. THE BASIS
- COORDINA
- 4. THIS MAP IS CONVEYEN
- MAPPING R 5. SEE SHEET
- 6. REPRESEN
- SHEET 8. A **RIGHT BAN**
- 9. CONTROL D CONDITION
- VERIFIED D **10. DEVIATION**
- SHOWN UN
- 11. PROGRESS EXISTING (WAS FOUN

PROJECT DAT STREAM REST STREAM RES STREAM ENH (*-DESIGN LEN

WETLAND RES WETLAND EN (*-DESIGN ARE DETERMINED

TOTAL DISTUR TOTAL CONSE

> <u>Stf</u> Cor LOC LOC ROC

SHEET INDEX

SHEET 1 - TITLE, VICINITY MAR SHEET 2 - PLAN VIEW - UT1A SHEET 3 - PLAN VIEW - UT1A SHEET 4 A&B - PLAN VIEW - W SHEET 5 - PLAN VIEW - UT1B SHEET 6 - PLAN VIEW - UT1B SHEET 7 - LONGITUDINAL PRO SHEET 8 - LONGITUDINAL PRO **CROSS-SECTIONS** SHEET 9 - PLAN VIEW - PLANT

RENCES: <u>MNER:</u> DRTH CAROLINA ECOSYSTEM HANCEMENT PROGRAM 52 MAIL SERVICE CENTER ALEIGH, NC 27099-1652 19)715-0476 EP PROJ. MGR.: TRACY MORRIS EP REVIEW COORDINATOR: LIN XU DNTRACTOR: ACKWATER ENVIRONMENTAL TTSBORO, NC 19)523-4375 SIGNER: CHAEL BAKER ENGINEERING, INC. ARY, NC 19)463-5488 (ISITNG CONDITIONS & BOUNDARY FORMATION PROVIDED BY DESIGNER DTES ICES ARE HORIZONTAL UNLESS E NOTED. CAL DATUM IS NAVD 88. OF BEARINGS IS NCGS STATE PLANE GR TES NAD83 DATUM. S NOT FOR RECORDATION, SALES, OR ICES AND DOES NOT COMPLY WITH G.S. EQUIREMENTS. S 7-8 FOR LONGITUDINAL PROFILE DATA TATIVE CROSS-SECTIONS ARE PRESENT	CONSERVATION EASEMENT REFERENCES: DB 7703, PG 36 PB 119, PG 172 DB 396, PG 163 DB 3447, PG 464	REVISIONS, DATE AND INITIAL:	1 01 01NA
LL CROSS-SECTIONS ARE FROM LEFT BA K (FACING DOWNSTREAM). DATA SHOWN TAKEN FROM EXISTING IS SURVEY PROVIDED BY DESIGNER & DURING CONSTRUCTION & AS-BUILT SURV FROM DESIGN WAS NEGLIGIBLE AND IS NDER THE AS-BUILT ALIGNMENT. S ENERGY POWER EASEMENT TAKEN FF CONDITIONS SURVEY DATA AND NO DEEL ID FOR THIS EASEMENT. <u>FA:</u> TORATION LENGTH (UT1A) 3,6 TORATION LENGTH (UT1B) 3,6 ANCEMENT LENGTH (UT1C) 1,9 NGTH) STORATION AREA 96. HANCEMENT AREA 3.6 EA. ACTUAL AREA TO BE DURING MONITORING.)	ANK TO VEYS. 5 NOT ROM D 57 LF* 561 LF 35 LF 35 LF	TITLE	JILT SURVEY OF RUN CREEK - STREAM & RATION SCO# 06-06901-0 UMBERLAND COUNTY NORTH CARO
RBED AREA 157 ERVATION EASEMENT AREA 228 <u>RUCTURE DATA:</u> NSTRUCTED RIFFLES 4 G VANES 26 G WEIRS 4 OT WADS 82 P, SHEET KEY, GENERAL	7.6 AC 5.3 AC		AS-BL UT TO JUMPING WETLAND RESTO SPRING LAKE
/ETLAND SLOUGH DFILE - UT1A DFILE - UT1B		DATE: SURVE DRAWI REVIEV	06/16/2010 EYED BY: DST/EGT NBY: DST/EGT WED BY: DST/EGT CT: TLS-09-009
1-8 (UTTB) ING PLAN		SCALE	R FINAL AS-BUILT.DWG

NOTES
1. SEE SHEET 1 FOR GENERAL NOTES. 2. NINE (9) PAGE DOCUMENT IS NOT VALID WITHOUT THE TITLE SHEET (SHEET 1 OF 9).

Image: Service And Initial Image: Service And Initial Image: Service And Initial Revisions, Date And Initial Image: Service And Initial AS-BUILT SURVEY OF Image: Service And Initial Image: Service And Initial Image: Service And Initial Image: Service And Initial And Initial Image: Service And Initial Image: Service And Initial And Initial And Initinitial And Initial And Initial And Initial And Initial And Initini			
MEET OUR COUNT MARING EAK - STREAM & NOTHONO SCOM 06-00901-01 DATE: 06/16/2010 DATE: 06/16/2010 D	VTE AND INITIAL:	TURNER LAND SURVEYING, PLLC 3201 Glenridge Drive, Raleigh, NC 27604 – (919)875-1378 Lturner921@nc.rr.com – Dturner119@nc.rr.com www.TURNERLANDSURVEYING.com	
BROFILE UTA BROFILE UTA BROFI	REVISIONS, D	N NOV NOV NOV NOV NOV NOV NOV NOV NOV NO	
DATE: 06/16/2010 SURVEYED BY: DST/EGT DRAWN BY: DST/EGT REVIEWED BY: DST/EGT PROJECT: TLS-09-009 FILE: UTJR FINAL AS-BUILT.DWG SCALE: AS SHOWN SHEET	PROFILE - UT1A	UT TO JUMPING RUN CREEK - STREAM & WETLAND RESTORATION SCO# 06-06901-01 Spring lake cumberland county NORTH CARLING	
DRAWN BY: DST/EGT REVIEWED BY: DST/EGT PROJECT: TLS-09-009 FILE: UTJR FINAL AS-BUILT.DWG SCALE: AS SHOWN	DATE: 06/16/2010 SURVEYED BY:		
REVIEWED BY: DST/EGT PROJECT: TLS-09-009 FILE: UTJR FINAL AS-BUILT.DWG SCALE: AS SHOWN	DRAWN BY: DST/EGT		
FILE: UTJR FINAL AS-BUILT.DWG SCALE: AS SHOWN	PROJECT: TLS-09-009		
	FILE: UTJI SCALE:	R FINAL AS-BUILT,DWG	

